欢迎访问无锡市中波机械制造有限公司的网站
 
  • 产品名称:无锡波纹补偿器公司_法兰补偿器相关-无锡市中波机械制造有限公司
  • 产品价格:999.00
  • 产品数量:999
  • 保质/修期:1
  • 保质/修期单位:
  • 更新日期:2021-01-19
产品说明

  补偿吸收管道轴向、横向、角向热变形!  2!波纹补偿器伸缩量,方便阀门管道的安装与拆卸!  3。吸收设备振动,减少设备振动对管道的影响!  4!吸收地震、地陷对管道的变形量。  方形自然补偿器有两个作用:  1.在管道穿越基础梁或地下室墙的时候,为了避免基础的沉降对管道的压力,需要安装方形补偿器.  2。在热力管道过长的情况下,需要安装方形补偿器来减小‘热胀冷缩’对管道的拉伸!三!管道的热变形计算:  计算公式:X=a*L*△T  x管道膨胀量  a为线膨胀系数,取0。

  1管道大安装长度计算  有补偿直埋的管道应在二处高固定点,一是在直管段的端部,二是在管道的分支处!长的无分支的直线管道两补偿器之间可以不设固定点,靠管道自然形成的“驻点”即可发挥固定点的作用!驻点是两补偿器之间管道的那个不动点,在管径相同,埋深一致时,驻点与两补偿器间的距离相等!褡补偿器(包括转角处自然补偿器)至固定点之间的距离不得超过管道的大安装长度Lmax,管道大安装长度的定义是固定点至自由端(补偿器)的长度,在此长度下产生的摩擦力不得超过管道许用应力下相应的弹性力!

  0133mm/m  L补偿管线(所需补偿管道固定支座间的距离)长度  △T为温差(介质温度-安装时环境温度)  三!关于轴向型、横向型和角向型补偿器对管系及管架设计的要求(一)轴向型补偿器  1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架!主固定管架要考虑波纹管静压推力及变形弹性力的作用.推力计算公式如下:  Fp=100*P*A  Fp-补偿器轴向压力推(N),  A-对应于波纹平均直径的有效面积(cm2),  P-此管段管道高压力(MPa)!

我们推荐无锡波纹补偿器公司

  Lmax按下式计算:  常用管道的大安装长度Lmax!应考虑16kgf/cm2内压力所产生的环向应力的综合影响.  3。2固定支座的设计计算   具有2个管道分支并在主干线上有一处转角管道平面,补偿器的布置应满足Ln<Lmax的条件。驻点G1、G2的推力为零,所以,此点处不必设置固定支座,但为了防止回填土的不均匀,埋深的不一致和预制保温管外壳粗糙度的不规则等可能会造成驻点的漂移,所以,对处于驻点位置的管道分支处G1、G2需设置支座,以G1为例其轴向推力可按下式计算:  F1=Pb2L2f-0!

  固定支座G3也驻点位置,从管道和土壤的摩擦力来讲,该点也受到大小相等,方向相反的两个时作用,但应注意到该点同时又受到转角处的盲板力的作用,考虑驻点漂移的影响,固定支座G3的推力  F3=1。2Pn*A4  式中F3-作用在固定支座G3的水平推力,Kgf;  Pn-管道工作压力,Kgf/cm2;  A4-B4膨胀节的有效面积,cm2!二!补偿器作用:  补偿器也称伸缩器、膨胀节、波纹补偿器.补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用:  1!

  8(Pb3L2f)  式中F1-固定支座G1的水平推力,kgf;f-管道单位长度摩擦力,Kgf/m  Pb2-B2膨胀节的弹性力,Kg;Pb3-B3膨胀节的弹性力,Kgf  k2-B2膨胀节的刚度,Kgf/mm;  △L2-B2膨胀节的补偿量,mm;  L2-膨胀节至G1的距离,m;  假如某一分支如自G2接出的分支带有补偿器B!那么,G2还受到一侧向推力的作用,如图中的F2(y),当L5很短(实际布置时L5也应很短),那么,侧向力F2(y)的大小为:  F2(y)=Pn*A5Pb5  式中Pn-管道工作压力,Kgf/cm2  A5-B5膨胀节的有效面积,cm2;  Pb5-B5膨胀节的弹性力kgf。

无锡波纹补偿器公司

  25-1!6Mpa。三!供热管道直埋式补偿器安装要求  (一)用途:  直埋式波纹补偿器主要用于直埋管线的轴向补偿,具有抗弯能力,所以可不考虑管道下沉的影响,产品具有补偿量大,寿命长的特点!  (二)使用说明:  直埋式波纹补偿器主要适用于轴向补偿,同时具有超强抗弯能力,所以不考虑管道下沉的影响。直埋式波纹补偿外壳及导向套筒保护下实现自由伸缩补偿,其它性能跟普通波纹补偿器相同.  (三)选用与安装:  3!


吸收塔膨胀节_金属补偿器相关-无锡市中波机械制造有限公司

   如果您看到这段话,说明您对我们波纹补偿器感兴趣,不要犹豫,给我们一个机会,也给自己一个机会。 拿起手机来拨打我们的电话。艳红等待着您的每一次致电:15995203521 让无锡市中波机械制造有限公司为您服务, 我们在无锡市新吴区鸿山工业配套区35号地块这里等您。

增压补偿器是作什么用的?
增压补偿器的作用如下:①增压柴油机装有增压补偿器后,进气压力升高时,能自动加大有效行程,使供油量得到一定的补偿。当转速降低,涡轮增压柴油机达到低速时,进气压力、进气量急剧下降,如不迅速减油,会因油量过大而冒黑烟。②在低速时能自动减小有效行程,使油泵快速减油,所以补偿器又具有负校正的功能,实质上又是一种负校正装置。它能协调涡轮增压柴油机高、低速油量要求相差过大的矛盾,满足不同工况的要求。
波纹管补偿器的安装要求有哪些?
1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。2、对带内套筒的补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型补偿器的铰链转动平面应与位移转动平面一致。3、需要进行"冷紧"的补偿器,预变形所用的辅助构件应在管路安装完毕后方可拆除。
4、严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响补偿器的正常功能、降低使用寿命及增加管系、设备、支承构件的载荷。5、安装过程中,不允许焊渣飞溅到波壳表面,不允许波壳受到其它机械损伤。6、管系安装完毕后,应尽快拆除波纹补偿器上用作安装运输的黄色辅助定位构件及紧固件,并按设计要求将限位装置调到规定位置,使管系在环境条件下有充分的补偿能力。
7、补偿器所有活动元件不得被外部构件卡死或限制其活动范围,应保证各活动部位的正常动作。8、水压试验时,应对装有补偿器管路端部的次固定管架进行加固,使管路不发生移动或转动。对用于气体介质的补偿器及其连接管路,要注意充水时是否需要增设临时支架。
水压试验用水清洗液的96氯离子含量不超过25PPM。9、水压试验结束后,应尽快排波壳中的积水,并迅速将波壳内表面吹干。10、与补偿器波纹管接触的保温材料应不含氯。
风力发电机低电压穿越技术曾称“低电压穿越”。定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。  低电压穿越(Low voltage ride through,LVRt) 低电压过渡能力:Low Voltage Ride Through ,LVRT ;Fault Ride Through ,FRT曾称“低电压穿越”。定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。一、风力发电机低电压穿越技术1、问题的提出  对于变频恒速双馈风力发电机,在电网电压跌落的情况下,由于与其配套的电力电子变流设备属于AC/DC/AC型,容易在其转子侧产生峰值涌流,损坏变流设备,导致风力发电机组与电网解列。在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。于是,根据这种情况,国外的专家就提出了风力发电低电压穿越的问题。2、LVRT概念的解释  当电网发生故障时,风电场需维持一段时间与电网连接而不解列,甚至要求风电场在这一过程中能够提供无功以支持电网电压的恢复即低电压穿越。  目前对于风力发电低电压运行标准,主要以德国e.on netz公司提出的为参考。  双馈风力发电机由于其自身机构特点,实现LVRT存在以下几方面的难点:  1)确保故障期间转子侧冲击电流与直流母线过电压都在系统可承受范围之内;  2)所采取的对策应具备各种故障类型下的有效性;  3)控制策略须满足对不同机组、不同参数的适应性;  4)工程应用中须在实现目标的前提下尽量少地增加成本。3、电网电压跌落后DFIG运行的暂态过程分析(感觉这部分内容需要理论推导)  在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。这是因为双馈感应发电机在电网电压瞬间跌落的情况下,定子磁链不能跟随定子端电压突变,从而会产生直流分量,由于积分量的减小,定子磁链几乎不发生变化,而转子继续旋转,会产生较大的滑差,这样便会引起转子绕组的过压、过流。如果电网出现的是不对称故障的话,会使转子过压与过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。过流会损坏转子励磁变流器,而过压会使发电机的转子绕组绝缘击穿。二、低电压穿越技术的具体实现   目前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术,二种是引入新型拓扑结构,三是采用合理的励磁控制算法。本周我主要看了前两种,以下分别介绍。1、转子短路保护技术(crowbar电路)  这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。目前比较典型的crowbar电路有如下几种:  (1)混合桥型crowbar电路,如图1所示,每个桥臂有控制器件和二极管串联而成。  (2)IGBT型crowbar电路,如图2所示,每个桥臂由两个二极管串联,直流侧串入一个IGBT器件和一个吸收电阻。  (3)带有旁路电阻的crowbar电路,如图3所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。2、引入新型拓扑结构  这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。 在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所引起的的转子侧大电流冲击,转子侧励磁变流器选用电流等级较高的大功率IGBT器件,这样来保证变流器在电网故障时不与转子绕组断开时的安全。电网电压跌落再恢复时,转子侧最大电流可能会达到电压跌落前的几倍。因此,当电网电压跌落严重时,为了避免电压回升时系统在转子侧所产生的大电流,在电压回升以前,将双馈感应发电机通过反并可控硅电路与电网脱网。脱网以后,转子励磁变流器重新励磁双馈感应发电机,电压一旦回升到允许的范围之内,双馈感应发电机便能迅速地与电网达到同步。再通过开通反并可控硅电路使定子与电网连接。这样可以减小对IGBT耐压、耐流的要求。对于短时间内能够接受大电流的IGBT模块,可以减少双馈感应发电机的脱网运行时间。转子侧大功率馈入直流侧会导致直流侧电容电压的升高,而直流侧的耐压等级依赖于直流侧电容的大小,因此直流侧设计crowbar电路,在直流侧安装电阻来作吸收电路,将直流侧电压限制在允许范围内。   这种方式的不足之处是:该方案需要增加系统的成本和控制的复杂性。考虑到定子故障电流中的直流分量,需要可控硅器件能通过门极关断,这要求很大的门极负驱动电流,驱动电路太复杂。这里的可控硅串联电路如果采用穿透型IGBT的话,IGBT必须串联二极管。而采用非穿透型IGBT的话,通态损耗会很大。理论上,如果利用接触器来代替可控硅开关的话,虽通态时无损耗,但断开动作时间太长。而且由于该方案在输电系统故障时发电机脱网运行,因此对电网恢复正常运行起不到积极的支持作用。   通常双馈感应发电机的背靠背式励磁变流器采用如图5a所示的与电网并联方式,这意味着励磁变流器能向电网注入或吸收电流。为了提高系统的低电压穿越能力,文献提到了一种新的连接方式如图5b,即将变流器与电网进行串联连接,比如,变流器通过发电机定子端的串联变压器实现与电网串联连接,则双馈感应发电机定子端的电压为网侧电压和变流器输出的电压之和。这样便可以通过控制变流器的电压来控制定子磁链,有效的抑制由于电网电压跌落所造成的磁链振荡,从而阻止转子侧大电流的产生,减小系统受电网扰动的影响,达到强化电网的目的。但这种方式将增加系统许多成本,控制也比较复杂。   低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。风电机组应该具有低电压穿越能力:  a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;  b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;  c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。  风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较。在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的LVRT能力设计。结果表明, 风电机组LVRT能力的深度主要由系统接线和风电场接入方案决定。设计风电机组LVRT能力时,机组运行曲线的电压限值应根据具体接入方案进行分析计算。  解决:需要改动控制系统,变流器和变桨系统。我国的标准将是20%电压,625ms,接近awea的标准。  针对不同的发电机类型有不同的实现方法,最早采用也是最普遍的方案是采用CROWBAR,有的已经安装在变频器之中,根据不同的系统要求选择低电压穿越能力的大小,即电压跌落深度和时间,具体要求根据电网标准要求。   风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。也就是在变流器的输出侧接一旁路CRAWBAR,先经过散热电阻,再进入三相整流桥,每一桥臂上为晶闸管下为一二极管,直流输出经铜排短接.当低电压发生后,无功电流均有加大,有功电流有短时间的震荡,过流在散热电阻上以热的形式消耗,按照不同的标准,能坚持的时间要根据电压跌落值来确定。当然,在直流环节上也要有保护装置.详细就不讨论.具体的讨论再联系。FRT的实物与图片可供大家参考。但是大家所提到的FRT只是老式的,新式是在直流环节有保护装置,但输出侧仍是无源CRAWBAR。   crowbar触发以后,按照感应电动机来运行,这个只能保证发电机不脱网,而不能向电网提供无功,支撑电网电压。现在LVRT能提供电网支撑的风机很少,这个是LVRT最高的level。德国已经制定标准了。最后还是得增加转子变频器的过流能力。   另外,控制系统要嵌入动态电压暂降补偿器,当有暂降时瞬时将电压补偿上去,先保住控制系统不跳。ABB号称采用了一种ACtive CROWBAR来实现低压穿越功能。   低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而 “穿越”这个低电压时间(区域)。LVRT是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。不同国家(和地区)所提出的LVRT要求不尽相同。目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。这就要求风力发电系统具有较强的低电压穿越(LVRT)能力,同时能方便地为电网提供无功功率支持,但目前的双馈型风力发电技术是否能够应对自如,学术界尚有争论,而永磁直接驱动型变速恒频风力发电系统已被证实在这方面拥有出色的性能。


供应商信息
无锡市中波机械制造有限公司
金属成型设备
公司地址:无锡市新吴区鸿山工业配套区35号地块
企业信息
联系人:傅艳红
手机:15995203521
注册时间: 2004-07-08

联系人:傅艳红

联系电话:15995203521

邮箱:yanhong.fu@zbjxmade.com

地址:无锡市新吴区鸿山工业配套区35号地块

 

网站首页 | 关于我们 | 联系方式 | 付款方式 | 积分规则 | 使用协议 | 版权隐私 | 网站地图 | 排名推广 | 广告服务 | 积分换礼 | 网站留言 | RSS订阅 | 豫ICP备16001531号
咨询QQ号:2851780792 
(c)2008-2015 无忧供应网(www.gy515.com) All Rights Reserved

声明:本站部分信息由企业自行提供,该企业负责信息内容的真实性、准确性和合法性。无忧供应网对此不承担任何保证责任!